English | 中文版 | 手机版 企业登录 | 个人登录 | 邮件订阅
当前位置 > 首页 > 技术文章 > DAP-seq——蓝景科信(无需特异性抗体,无需转基因材料,省时省力)

DAP-seq——蓝景科信(无需特异性抗体,无需转基因材料,省时省力)

浏览次数:35 发布日期:2024-12-25  来源:本站 仅供参考,谢绝转载,否则责任自负
      无需针对每种蛋白制备特异性抗体,无需构建转基因体系,高通量检测转录因子及DNA结合蛋白的结合位点。
      蓝景科信为您提供DAP-seq全流程技术服务和个性化数据分析,具有100多个物种,2000多个转录因子的实验经验,已协助很多客户成功发表文章。例如:Molecular Plant,The Plant Cell,Plant Physiology,Plant Biotechnology Journal,Journal of Integrative Plant Biology,New Phytologist,Cell等。
      在基因功能组学和表观遗传学研究中,转录因子结合位点(Transcription Factor Binding Sites, TFBS)的发掘一直是研究热点之一。传统的ChIP-seq(染色质免疫共沉淀测序)方法,在抗体质量很好的情况下能够有效检测到TFBS。然而,好的抗体可遇不可求,这限制了ChIP-seq更广泛的应用。
      2016年,O'Malley RC等人在Cell上发表了使用DAP-seq技术,快速绘制转录因子调控靶向DNA区域图谱的文章。2017年,Bartlett A等在Nature Protocols上发表了DAP-seq的实验方法。DAP-seq技术使TFBS的研究不再局限于任何生物,不再受抗体质量的限制,为生命科学和医学领域转录因子的研究提供了新型高效的工具。
技术流程
已做物种:
植物:
拟南芥、甘蓝型油菜、白菜、小麦、大麦、花生、辣椒、番茄、草莓、黄花棘豆、苦荞、红薯、木薯、马铃薯、烟草、人参、罂粟、甘蔗、短芒大麦草、二色补血草、烟草、百脉根、芍药、丹参、狗尾草、菠菜、玉米、大豆、高粱、藜麦、陆地棉、甜瓜、黄瓜、葡萄、灰毡毛忍冬、粉葛、三叶青、猕猴桃、香蕉、蒺藜苜蓿、紫花苜蓿、伴矿景天、苔藓、地钱、毛果杨、84K杨、小黑杨、胡杨、山新杨、小叶杨、毛白杨、刚毛柽柳、白桦、油松、毛竹、麻竹、银杏、油桐、荔枝、柑橘、甜橙、核桃、柿子、闽楠、木荷、脐橙、板栗、枣、杜梨、苹果、桃、樱桃、茶树、梅、月季、白木香、橡胶树、三角褐指藻、芥蓝、盐芥、无花果、菠萝、西瓜、甘薯、花椒、玫瑰、银腺杨、橡胶、山金柑、黄连、百合、水稻、杨树、白菜、梨、甜菜、油菜、甘蓝、野大豆、球等鞭金藻、滇杨、枸杞、龙须菜、马尾松、大叶秦艽、圆柱拟脆杆藻、茄子、集胞藻、芒果、百岁兰、柳枝稷、胡萝卜、甘野菊、生菜、燕麦、谷子、中带鼓藻、凤梨、铁皮石斛、紫菜、蔓菁、西葫芦、旱柳、杨梅、小立碗藓、紫薇、草菇、黑麦草、青蒿、千金子、黄花蒿、圆果种黄麻等
动物:
驴、飞蝗、新孢子虫、烟粉虱、草地贪夜蛾、斑点叉尾鮰、绵羊、褐飞虱、斜纹夜蛾、华贵栉孔扇贝、曼氏血吸虫
真菌:
拟轮枝镰孢菌、猪苓真菌、意大利青霉、草酸青霉、金黄壳囊孢、灵芝、糙皮侧耳、草菇、灰盖鬼伞、虫草、亚洲镰刀菌、蝗绿僵菌、裂殖壶菌、禾谷镰刀菌、元蘑、疫霉、高卢蜜环菌
细菌:
路德维希肠杆菌、嗜热厌氧杆菌、生氮假单胞菌、布鲁氏菌、肺炎克雷伯菌、类球红细菌、红杆菌科细菌、成团泛菌、铜绿假单胞菌、伯克霍尔德菌

 部分客户发表文章:
Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. Plant Cell. 2024 Feb 26;36(3):585-604. doi: 10.1093/plcell/koad297. (IF=11.6)
Yuan J, Liu X, Zhao H, Wang Y, Wei X, Wang P, Zhan J, Liu L, Li F, Ge X. GhRCD1 regulates cotton somatic embryogenesis by modulating the GhMYC3-GhMYB44-GhLBD18 transcriptional cascade. New Phytol. 2023 Oct;240(1):207-223. doi: 10.1111/nph.19120. (IF=9.4)
Yu Z, Chen X, Li Y, Shah SHA, Xiao D, Wang J, Hou X, Liu T, Li Y. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. Plant Physiol. 2024 Jan 25:kiae021. doi: 10.1093/plphys/kiae021. (IF=7.4)
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. Plant Physiol. 2023 Nov 22:kiad627. doi: 10.1093/plphys/kiad627. (IF=7.4)
Dong Q, Tian Y, Zhang X, Duan D, Zhang H, Yang K, Jia P, Luan H, Guo S, Qi G, Mao K, Ma F. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Hortic Plant J. 2023. doi: 10.1016/j.hpj.2023.05.005. (IF=5.7)
Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby YA, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. Plant Physiol. 2023. doi: 10.1093/plphys/kiad315. (IF=8.005)
Zhu J, Wei X, Yin C, Zhou H, Yan J, He W, Yan J, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. Plant Cell Environ. 2023. doi: 10.1111/pce.14644. (IF=7.947)
Han P, Hua Z, Zhao Y, Huang L, Yuan Y. PuCRZ1, an C2H2 transcription factor from Polyporus umbellatus, positively regulates mycelium response to osmotic stress. Front Microbiol. 2023. 14:1131605. doi: 10.3389/fmicb.2023.1131605. (IF=6.064)
Zhang SL, Wang L, Yao J, Wu N, Ahmad B, Nocker S, Wu JY, Abudureheman R, Li Z, Wang XP. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. Horticulture Research. 2023. doi: 10.1093/hr/uhad070. (IF=7.291)
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. New Phytol. 2023. 238(5): 2113-2129. doi: 10.1111/nph.18896. (IF=10.323)
Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu QH, Chen J, Zhu S, Zhao T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant. 2023. doi: 10.1016/j.molp.2023.02.005. (IF=21.949)
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiol. 2023. doi: 10.1093/plphys/kiad057. (IF=8.005)
Liu YN, Wu FY, Tian RY, Shi YX, Xu ZQ, Liu JY, Huang J, Xue FF, Liu BY, Liu GQ. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi. Commun Biol. 2023. doi: 10.1038/s42003-022-04154-6. (IF=6.548)
Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, Mendu V, Liu Z, Li F, Yang Z. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiol. 2022. doi: 10.1093/plphys/kiac590. (IF=8.005)
Li M, Hou L, Zhang C, Yang W, Liu X, Zhao H, Pang X, Li Y. Genome-wide identification of direct targets of ZjVND7 reveals the putative roles of whole-genome duplication in Sour jujube in regulating xylem vessel differentiation and drought tolerance. Front Plant Sci. 2022. 13: 829765. doi: 10.3389/fpls.2022.829765. (IF=6.627)
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. J Integr Plant Biol. 2022. doi: 10.1111/jipb.13399. (IF=9.106)
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). Plant Biotechnol J. 2022. doi: 10.1111/pbi.13920. (IF=13.263)
Chai Z, Fang J, Huang C, Huang R, Tan X, Chen B, Yao W, Zhang M. A novel transcription factor, ScAIL1, modulates plant defense responses by targeting DELLA and regulating gibberellin and jasmonic acid signaling in sugarcane. J Exp Bot. 2022. 73: 6727-6743. doi: 10.1093/jxb/erac339. (IF=7.298)
Li R, Zheng W, Yang R, Hu Q, Ma L, Zhang H. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5-OsAPX1 transcriptional module in rice. Plant J. 2022. 112: 151-171. doi: 10.1111/tpj.15937. (IF=5.726)
Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell. 2022. 34: 4293-4312. doi: 10.1093/plcell/koac244. (IF=12.085)
Luo M, Lu B, Shi Y, Zhao Y, Wei Z, Zhang C, Wang Y, Liu H, Shi Y, Yang J, Song W, Lu X, Fan Y, Xu L, Wang R, Zhao J. A newly characterized allele of ZmR1 increases anthocyanin content in whole maize plant and the regulation mechanism of different ZmR1 alleles. Theor Appl Genet. 2022. 135: 3039-3055. doi: 10.1007/s00122-022-04166-0. (IF=5.574)
Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiol. 2022. 190: 1057-1073. doi: 10.1093/plphys/kiac196. (IF=8.005)
Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Sci. 2021. 308: 110924. doi: 10.1016/j.plantsci.2021.110924. (IF=5.363)
Liang S, Gao X, Wang Y, Zhang H, Yin K, Chen S, Zhang M, Zhao R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochem Biophys Res Commun. 2020. 526: 1100-1105. doi: 10.1016/j.bbrc.2020.04.011. (IF=3.322)
Yao J, Shen Z, Zhang Y, Wu X, Wang J, Sa G, Zhang Y, Zhang H, Deng C, Liu J, Hou S, Zhang Y, Zhang Y, Zhao N, Deng S, Lin S, Zhao R, Chen S. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J Exp Bot. 2020. 71: 1527-1539. doi: 10.1093/jxb/erz493.(IF=5.36)
 

 
来源:蓝景科信河北生物科技有限公司
联系电话:15632249798
E-mail:hope.liu@bluescape.cc

用户名: 密码: 匿名 快速注册 忘记密码
评论只代表网友观点,不代表本站观点。 请输入验证码: 8795
Copyright(C) 1998-2025 生物器材网 电话:021-64166852;13621656896 E-mail:info@bio-equip.com