蒸发光散射检测是目前中药材检测中常用的分析仪器,它是2015版药典标准黄芪甲苷检测必不可少的仪器之一。
蒸发光散射检测器(ELSD)工作原理
一、蒸发光散射检测器(ELSD)的设计原理:
在辅助气体作用下,将流动相雾化,形成的液雾(雾珠)通过加热而蒸发,此时溶解在流动相中不易挥发的样品即形成颗粒物,这些颗粒物由辅助气体推动进入光束通道,造成光束散射。通过测定散射光的强度即可预测样品颗粒的数量,从而测定样品浓度。
二、蒸发光散射检测器(ELSD)基本结构:
依据ELSD的设计原理,ELSD的结构由三大部分组成:即雾化雾珠处理,蒸发和散射光检测。 第一步:雾化过程,也称为喷雾过程。流动相与辅助气混合,在辅助气的压力作用下从一小孔中喷出而形成浓雾,整个装置称为喷嘴或称雾化器。流动相雾化后形成的液雾(雾珠)由于均匀性及一致性差,因此必须进行处理,否则影响某其有效蒸发。此过程称为分流。依据不同的分流方式,ELSD经历了三代发展。即限流器分流技术时代,撞击器及低温分流技术时代和热分流技术时代。在第二代分流技术时代,依据所使用的分流技术不同,出现了两大类的ELSD,即常说的A型和B型。A型ELSD以撞击器分流技术设计,可以实现分流和不分流两种操作模式;B型ELSD,以低温分流技术设计,只能实现分流操作,但由于其雾珠处理利用颗粒粒度方式分流,因而实现了低温挥发,特别有利于半挥性化合物的测定及高水相流动相的应用。
A、B类型其区别在于:类型A的操作是全部柱流出物都进入直的漂移管,让流动相在其中蒸发;类型B的操作是把柱流出物通过一个弯管,在此管中大的颗粒沉积下来流入废气管,其余的小颗粒进入螺旋状的蒸发管。Wilcox考察了这两种类型的ELSD,他认为类型A的ELSD把所有的气溶胶都送到漂移管中,为了有利于蒸发常常使用较高的操作温度,因此它适合于检测不挥发的样品,使用流速为1.0ml/min(或更低流速)的挥发性流动相进行分析。类型B的ELSD将大颗粒气溶胶撞在弯曲管管壁上除去,使气溶胶粒度分布变窄,在较低的温度下易于蒸发,适合于检测半挥发性样品,以流速为1.5ml/min(或更高流速)的高含水流动相进行分析。
第二步:蒸发,经过第一部处理的雾珠进一步流向经加热处理的区域,此时雾珠在热的作用下不断挥发形成气体,挥发性差的样品从流动相雾珠中析出而形成颗粒物。这一装置称为蒸发区或漂移管。漂移管也有两种设计方式,即螺线管式和直管式设计。螺线管有更长的漂移距离,能更好的实现蒸发,但随着流动相所经距离的延长,峰形变宽,灵敏度降低,且漂移管不方便维护,而直管则有更窄的峰,相对灵敏度提高,且维护方便。
第三步:检测,监测区由光源和光检测器组成,光源经光学处理后形成一束光,穿过漂移管末端口,气体经过光束时,不会影响光的穿透,而当样品颗粒经过时,光即产生散射。散射出来的光照在90度位置上的光检测器即产生广电信号。在这里,光源有激光器、LED和钨卤灯。
激光器:光源强度大,发热少,结构简单,无需特殊光学聚光文件。寿命长。
LED:发热少,结构简单,强度弱,须进行聚光等光学处理。
钨卤灯:发热大,强度弱,须进行聚光等光学处理,波长范围宽。
散射监测器其实应与光源配合使用,对于激光器,由于光强度大,其散射光强度也强,常用光电二极管作为检测器,而对于光强较弱的光源,必须使用光电倍增管作为检测器。
光电二极管:结构简单,体积小,无特殊供电路,故障率低。
光电倍增管:体积较大,需供高压,故障率高,放大倍数可控制,可检测低强度光。
三、 ELSD特征:
依据ELSD原理,ELSD是一类广谱性、通用型质量检测器,几乎所有挥发性低的化合物均可被检测,且ELSD是质量型检测器,只与待测物的量有关,而与其光学特性,电化学特征及化合物本身的组成无关。
四、蒸发光散射检测器(ELSD)的检测原理
尽管ELSD有两种检测模式,但其检测原理是相同的。Charlesworth奠定了ELSD检测的理论基础。Mengerink等系统地总结如下:
1)雾化 色谱柱流出进入雾化器后,与充入的气体混合形成液滴,液滴的平均直径D0可以用Nakiyama和Tanasawa提出的公式计算:
D0=0.585×Sqr(σ)/( Δμ*sqr(ρ))+212(η/σ*ρ)^0.45*((1000×FL/Fg)^1.5)
其中D0为表面积体积平均直径(μm),为洗脱液的表面张力(N/m);Δμ为液体和气体之间的线速差(μm/s);η为柱流出物的粘度(Pa.s);ρ为柱流出物的体积质量(Kg/m);FL/Fg为柱流出物与气体的流速比。最初的液滴直径分布为高斯分布或非对称的正态分布。
2)漂移 液滴进入漂移管后挥发。液滴进入到加热的漂移管中,至少有三个现象发生:易挥发的部分蒸发;一些颗粒落到漂移管的管壁上;一些颗粒凝结在一起。Charlesworth提出了计算柱流出物蒸发时间的公式:
Td=ΔHVρD0^2/MvKfΔT
其中td为完全挥发的时间;ΔHV/M为摩尔挥发度;ΔT为雾化气体与液体表面的温度差;Kf为液滴周围气体薄层的热导率。
当温度上升到一定程度,被分析物(a)会同流动相一道挥发,因此最佳温度为tdm < td <tda。但为了减少颗粒在漂移管管壁上的沉淀,td的选择最好是比tda略高一点。FL/Fg增大会使颗粒间更容易凝结。
3)在可以忽略漂移管管壁上的沉淀或平均直径不被其它因素改变的前提下,进入光散射池的气溶胶中的颗粒直径d与被分析物在洗脱液中的浓度C成正比:
d∝ D0 ( c/ρa)^(1/3) (*)
其中:ρa为被分析物的体积质量。
对于轴心式的雾化器,当被分析物的质量浓度为1mg/L时,被分析物颗粒的大小处在米氏散射区域。根据米氏理论,散射光强度I可以表示为:
I=knd2(d/λ)^y
其中:k为常数;n是散射区域中颗粒的数目;λ为检测波长;随着d/λ的增加,y值从4.0减小到-2.2。当λ和n为常数,散射光强度以d^p(p<6)指数增加,根据(*)式,散射光强度以c^q(q<2)指数增加。
根据大量实验显示,ELSD的相应值(Y)与被测物浓度(X)的关系曲线比较复杂。在较高浓度范围内,大致呈线性;而在低浓度范围内,则大致呈指数关系,即Y=Ax^b,其中的b值往往为1-2(与理论相符);另有少数实验表明,响应值与被测物浓度呈二次函数关系,即Y=aX+Bx^2。
⑷校正曲线和检测限
当被分析物在洗脱液中的浓度较低时,被分析物浓度值的对数与响应值的对数的校正曲线大致呈线性。检测限可以通过公式算出:
末找到
其中mLOD为检测限(g);m为注入的被分析物的质量(g);N/H为噪音与峰高之比;x为校正曲线的斜率。
之后,Meeren等[建立了一个计算机模拟的ELSD检测机理模型,其基本理论也是建立在米氏理论的基础上。他们把影响ELSD的响应的因素分成四组:载气气压,雾化器的设计,流动相的组成和流速都将影响到雾化过程;被分析物的浓度和密度等决定了进入光散射池的气溶胶中的颗粒的直径;被分析物的折射指数,光源发出的光的强度和波长,光电倍增管的位置等将影响到散射光强度;光电倍增管的灵敏度和入射光的强度决定了检测的效率,即反映为实验者所观测到的峰面积。
冯埃生等 和Trathnigg等考察了影响ELSD检测性能的基本因素,他们发现漂移管温度对基线水平和噪音的影响没有明显的规律性,温度过低流动相得不到充分挥发,使基线水平较高;温度过高则可能带来更大的噪音。气体流速增大,使响应值减小,故最佳气速是在可接受噪音的基础上,产生最大检测响应值的最低气体。流动相中可以加入低于10mmol/L的挥发盐来调节所需的酸度。他们在实验中也发现,峰面积和峰高的自然对数分别与浓度的自然对数有较好的线性关系。
此外,还有不少实验者在用ELSD检测各种物质时,不同程度地研究了影响ELSD检测性能的基本因素,但其研究都不够系统,而且没有提出相应的理论。
4. ELSD在HPLC中的应用研究
ELSD在对类酯、表面活性剂、糖、氨基酸、 季铵盐、高聚物、甾体化合物等物质的检测,以及药物分析方面发挥着重要的作用。
归纳起来,这些物质往往具有如下的特点:1.物质本身不含生色团或吸光系数不大,使用UVD检测灵敏度很低。2.物质组分复杂,组分间极性差异较大,分离需要进行梯度洗脱,故RID几乎不适用,短波长UVD在梯度洗脱时常会发生基线漂移。使用ELSD检测,可以克服这些困难。对于不含生色团的物质,ELSD可以不经衍生,直接进行检测,从而避免了衍生带来的误差;ELSD在检测过程中,将流动相完全挥发,因此在梯度洗脱时,基线平稳。对不同物质,ELSD响应因子的变化比其他检测器(如紫外检测器)要小得多,在因缺乏标准品而无法做校正曲线的情况下,利用ELSD可以近似地提供不纯物的定量测定。HPLC/ELSD的色谱条件与LC/MS是一致的,在脱机情况下,使用HPLC/ELSD可以为LC/MS摸索色谱条件,节省使用昂贵的LC/MS系统的操作成本,而且可以方便地用LC/MS来分析检测出的不纯物,进行结构判定。
五、流动相为1ml/min时,雾化器氮气流量和漂移管温度与流动相组成的关系。
单一流动相 雾化器氮气流量 漂移管温度
环己烷 1.70 SLPM 70 ℃
氯 仿 1.65 SLPM 70 ℃
甲 醇 1.65 SLPM 70 ℃
乙 腈 1.70 SLPM 70 ℃
水 3.20 SLPM 115℃
混合流动相: 按流动相中混合溶剂的比率、计算混合流动相所需的雾化器气体流量和漂移管温度。例如以60%甲醇/水为流动相,其漂移管气体流量=(0.60)(1.65)+(0.40)(3.20)=2.27 SLPM; 其漂移管温度=(0.60)(70)+(0.40)(115)=88 ℃
梯度分离: 当进行梯度分离时,根据流动相中最低挥发性的溶剂决定雾化器气体流量和漂移管温度。
注:提高流动相流速,则应相应提高雾化器氮气流量和漂移管温度;降低流动相流速,则应相应降低雾化器氮气流量和漂移管温度。
3. ALLTECH 500ELSD 分析标准流动相流速为1ml/min,若要使用大于或小于1ml/min的流速,则应参考500ELSD说明书优化雾化器氮气流量及漂移管温度。
4. 每次使用完毕,应及时倒空500ELSD冷肼中冷凝的废液,若冷肼中废液积满,会影响尾气排放,造成基线噪音增加。
六. 结论
在以上的研究中,实验者都要对ELSD进行条件优化,即通过调节载气流速和漂移管的温度,使信噪比达到最大。
蒸发光散射检测器(ELSD)的响应不依赖于物质的光学性质,能检测挥发性低于流动相的样品。其检测灵敏度高,检测限已可达ng级;检测过程中,其基线稳定,能进行梯度洗脱。理论表明,ELSD的响应与被分析物的理化性质有一定关系,但这种关系并不大,某些实验也证明了这一点,从这个意义上来讲,ELSD不能被称为真正的质量检测器;由于被测物往往为同一类物质,其性质比较类似,因此许多实验者报道响应不依赖于被分析物的理化性质,理论与实际并不矛盾。