English | 中文版 | 手机版 企业登录 | 个人登录 | 邮件订阅
当前位置 > 首页 > 技术文章 > 种子质量与安全检验的高光谱成像研究进展

种子质量与安全检验的高光谱成像研究进展

浏览次数:4180 发布日期:2019-8-20  来源:本站 仅供参考,谢绝转载,否则责任自负

种子质量是植物育种和生产中的一个基础性和关键性因素,可以通过种子的发芽率或理化特性来衡量,在农业领域已变得越来越重要。一方面,优质种子是植物生长的良好开端,预示着丰收;另一方面,种子质量通常与食品质量密切相关,如质地、风味和营养成分。为了满足消费者的需求,种子在收获后应谨慎加工和储存。在采收、加工和储存过程中,需要一种快速、准确、无损的检测种子质量的方法。高光谱成像作为一种非破坏性、快速的种子质量和安全性评价方法,近年来备受关注。

高光谱成像技术结合了光谱技术和成像技术的优点,可以同时获取光谱和空间信息。也就是说,它可以同时获得不均匀样品的化学信息和化学成分的空间分布。高光谱技术在农业、食品、医药等行业得到了广泛的应用。高光谱成像技术在种子行业的潜在或实际应用包括种子活性、活力、缺陷、疾病、净度检测,种子成分测定。

本文总结和分析了高光谱技术在种子质量和安全检验方面的发展,介绍了该技术在种子分类分级、活性和活力检测、损伤(缺陷和真菌)检测、净度检测和种子成分测定等方面的能力,综述了该技术在种子质量检测和安全检测中的应用,包括分析的光谱范围、样品种类、样品状态、样品数量、特征(光谱特征、图像特征、特征提取方法)、信号模式等。

表1高光谱成像应用于种子分类和分级的参考文献摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley, wheat and sorghum

1 variety of each kind of grain

Spectra

PCA

PWbprediction map and OWc(single kernels)

Grain topography classification

Black bean

3

Spectra and image

SPA, PCA, GLCM

OW (single kernels)

PLS-DA, SVM

Variety classification

98.33% (PLS-DA)

Grape seed

3 varieties, two growth soil

Spectra

PCA

OW (single kernels), PW PCA and  prediction map

GDA

Assess Stage of maturation of grape seeds

> 95%

Grape seed

3

Spectra and image

PCA

OW (single kernels)

SVM

Variety classification

94.30%

Maize

2 (transgenic and non-transgenic)

Spectra

PCA, CARS

PW PCA and prediction map, OW (single  kernels)

PLS-DA, SVM

Transgenic and non-transgenic  classification

99.5% (PLS-DA)

Maize

4 varieties, 3 crop years

Spectra

no

OW (single kernels)

LS-SVM

Variety classification

91.50%

Maize

4 varieties, 3 crop years

Spectra

no

OW (single kernels)

LS-SVM

Variety classification

94.80%

Maize

4 varieties, 3 crop years

Spectra

no

OW (single kernels)

LS-SVM

Variety classification

94.40%

Maize

17

Spectra and image

PCA, SPA, GLCM, MDS

OW (single kernels)

LS-SVM

Variety classification

94.40%

Maize

18

Spectra and image

PCA

OW (single kernels), PW PCA and  prediction map

PLS-DA

Textural, vitreous, floury and the third  type endosperm

85% (PLS-DA)

Maize

3 hardness

Spectra and image

PCA

PW PCA and prediction map, OW (single  kernels)

PLS-DA

Hardness classification

97% (PLS-DA)

Maize

14

Spectra

joint skewness-based wavelength selection

OW (single kernels)

LS-SVM

Variety classification

98.18%

Maize

3

Spectra and image

PCA

OW (single kernels)

SVM, RBFNN

Variety classification

93.85% (RBFNN)

Maize

6

Spectra and image

PCA, KPCA, GLCM

OW (bulk samples)

LS-SVM, BPNN, PCA, KPCs

Classes classification

98.89% (PCA-GLCM-LS-SVM)

Rice

4 origins

Spectra and image

PCA, GLCM

OW (single kernels)

SVM

Variety classification

91.67%

Rice

4

Spectra

PLS-DA, PCA

PW PCA and OW (bulk samples)

KNN, PLS-DA, SIMCA, SVM, RF

Seed cultivars classification

100% (SIMCA, SVM, and RF)

Soybean, maize and rice

3 of each kind of seed

Spectra

neighborhood mutual information

OW (single kernels)

ELM, RF

Variety classification

100% (ELM)

Waxy corn

4

Spectra and image

SPA, GLCM

OW (single kernels)

PLS-DA, SVM

Variety classification

98.2% (SVM)

Wheat

8

Image

WT, STEPDISC, PCA

PW and OW (bulk samples)

BPNN, LDA, QDA

Classes classification

99.1% (LDA)

Wheat

8

Spectra

STEPDISC

OW (bulk samples)

LDA, QDA, Standard BPNN, Wardnet BPNN

Variety classification

94–100% (LDA)

Wheat

5

Spectra

STEPDISC

PW PCA and OW (bulk samples)

LDA, QDA

Classes classification

90–100% (LDA)

表2 高光谱成像应用于种子活力和活力检测的参考文献摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley

1 variety, 8 treatments

Spectra

PCA, MNF

PWbprediction map and OWc(single kernels)

Maximum likelihood multinomial,  regression classifier

Germination level detection

97% when single kernels grouped into the  three categories

Corn

3 varieties, 2 treatments

Spectra

No

OW (single kernels)

PLS-DA

Viability prediction

> 95.6%

Cryptomeria japonica and Chamaecyparis  obtuse

2 treatments of each kind of seed

Spectra

No

OW (single kernels)

Spectral index

Viability prediction

98.30%

Cucumber

1 variety, 2 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Viability prediction

100%

Muskmelon

1 variety, 4 treatments

Spectra

VIP, SR, and SMC

OW (single kernels)

PLS-DA

Viability prediction

94.60%

Norway spruce

1 variety, 3 treatments

Spectra and image

L1-regularized logistic regression based  feature selection

OW (single kernels)

SVM

Viability prediction

> 93%

Pepper

1 variety, 2 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Germination level detection

> 85%

Tree seeds

3 varieties, 8 treatments

Spectra

LDA

OW (single kernels)

LDA

Germination level detection

> 79%

Wheat, barley and sorghum

B: 3 varieties W: 3 varieties S: 2,  varieties 6 treatments

Spectra

PCA

OW (single kernels), PW prediction map

PLS-DA, PLSR

Viability prediction

R = 0.92 (PLS-DA)

表3 高光谱成像应用于种子质量缺陷检测的参考文献摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Mung bean

1 variety, 8 treatments

Spectra and image

PCA

OWb(single kernels)

LDA, QDA

Insect damage detection

> 82%

Soybean

1 variety, 5 treatments

Spectra and image

GLCM

OW (single kernels)

LDA, QDA

Insect damage detection

99% (QDA)

Wheat

1 variety, 4 insect varieties

Spectra and image

STEPDISC, GLCM, GLRM, PCA

OW (single kernels)

LDA, QDA

Insect damage detection

95.3–99.3%

Wheat

1 variety, 3 treatments

Spectra and image

PCA

PWcprediction map and OW (single kernels)

Spectral index

Seed sprouted detection

> 90%

表4 高光谱成像应用于种子真菌损伤检测的参考文献摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley

1 variety, 2 fungi

Spectra and image

PCA

PWbprediction map and OWc(single kernels)

LDA, QDA, MDA

Fungus (Ochratoxin  A and Penicillium) damage detection

> 82%

Canola

1 variety, 2 fungi,

Spectra and image

PCA

OW (single kernels)

LDA, QDA, MDA

Fungus (Aspergillus  glaucus and Penicilliumspp.) damage detection

> 90%

Corn

3 varieties, 5 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Fungus (Aflatoxin B1) damage detection

96.90%

Corn

1 variety, 3 treatments

Spectra

No

PW spectra

spectral index

Fungus (Aflatoxin A. flavus) damage  detection

93%

Corn

1 variety, 3 treatments

Spectra

PCA

OW (single kernels), PW PCA

LS-SVM, KNN

Fungus (Aflatoxin A. flavus) damage  detection

> 91% (KNN)

Hick peas, green peas, lentils, pinto  beans and kidney beans

5 different pulses, 2 fungi

Spectra and image

PCA

OW (single kernels), PW PCA

LDA, QDA

Fungus (Penicillium commune Thom, C.  and A. flavus Link, J.) damage detection

96%-100%

Maize

4 varieties

Spectra

PCA

OW (single kernels), PW prediction map

SVM, SVR

Fungus (Aflatoxin B1) damage detection

R2 = 0.77

Maize

1 variety, 5 treatments

Spectra

PCA, FDA

OW (single kernels), PW PCA

FDA

Fungus (Aflatoxin B1) damage detection

88%

Maize

1 variety, 5 treatments

Spectra

PCA

OW (single kernels)

FDA

Fungus (Aflatoxin B1) damage detection

98%

Maize

1 variety, 3 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Fungus (Fusarium) damage detection

77% (PLS-DA)

Maize

1 variety, nine treatments

Spectra

PCA, variable importance plots

OW (single kernels), PW PCA and  prediction map

PLSR

Fungus damage detection

R2 = 0.87

maize

1 variety, 2 fungi, 3 treatments

Spectra

No

OW (single kernels)

discriminant analysis

Fungus (Toxigenic and atoxigenic A.  flavus) damage detection

94.40%

Maize

12 varieties, 4 fungi

Spectra

PCA

OW (bulk samples), PW PCA

ANOVA, Fisher’s LSD test

Fungus (Aspergillus strains) damage  detection

Fisher’s LSD test

Oat50

1 variety, 4 treatments

Spectra

PLSR

OW (single kernels), PW prediction map

PLSR, PLS-LDA

Fungus (Fusarium) damage detection

R2 = 0.8

Peanut

1 variety, 2 treatments

Spectra

PCA

OW (single kernels), PW prediction map

PCA

Moldy kernel detection

98.73%

Peanut

1 variety, 2 treatments

Spectra

ANOVA, NWFE

OW (single kernels), PW prediction map

SVM

Fungus (Aflatoxin) damage detection

> 94%

Rice

1 variety, 6 treatments

Spectra

No

OW (bulk samples)

SOM, PLSR

Fungus (Aspergillus) damage detection

R2 = 0.97

Watermelon

1 variety, 2 treatments

Spectra

Intermediate PLS (iPLS)

OW (single kernels) PW prediction map

PLS-DA, LS-SVM

Fungus (Cucumber green mottle mosaic  virus) damage detection

83.3% (LS-SVM)

Watermelon

1 variety, 2 treatments

Spectra

Intermediate PLS (iPLS)

OW (single kernels), PW prediction map

PLS-DA, LS-SVM

Fungus (Acidovorax citrulli) damage  detection

> 90%

Wheat

4 varieties, 2 fungi

Spectra

PCA

OW (single kernels), PW spectra

LDA

Fungus (Fusarium) damage detection

> 91%

Wheat

33 varieties, 3 treatments

Spectra

No

OW (single kernels), PW spectra

spectral index

Fungus (Fusarium head blight) damage  detection

81%

Wheat

1 variety, 3 treatments

Spectra and image

PCA, STEPDISC

OW (single kernels)

LDA

Fungus (Fusarium) damage detection

92%

Wheat

1 variety, 3 fungi

Spectra and image

STEPDISC, GLCM, GLRM, PCA

OW (single kernels)

LDA, QDA, MDA

Fungus (Penicilliumspp., Aspergillus  glaucus group, and Aspergillus niger) damage detection

> 95%

Wheat

3 varieties

Spectra

PCA

OW (bulk, single kernels), PW PCA

PLS-DA, iPLS-DA

Fungus (Fusarium) damage detection

99%

高光谱成像是一个复杂的、多学科的领域,其目的是在不进行单调的样品制备情况下,同时对多种化学成分和物理属性的含量和空间分布进行有效和可靠的测量,因此为种子自动分级和缺陷检测系统的设计提供了可能。本文概述的各种应用表明,在种子分级、活力和活力检测、缺陷和疾病检测、清洁度检测和种子成分测定方面,高光谱成像具有很大的应用潜力。可以预见,采用该技术的实时种子监测系统将在不久的将来满足现代种子工业控制和分选系统的需求。

全文阅读

Feng L, Zhu S, Liu F, et al, et al. Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15(1): 1-25.

来源:上海泽泉科技股份有限公司
联系电话:021-32555118
E-mail:michael.shen@zealquest.com

用户名: 密码: 匿名 快速注册 忘记密码
评论只代表网友观点,不代表本站观点。 请输入验证码: 8795
Copyright(C) 1998-2025 生物器材网 电话:021-64166852;13621656896 E-mail:info@bio-equip.com