|
||||||||||||||||||||||||||||||
[发表评论] [本类其他产品] [本类其他供应商] [收藏] |
销售商: 上海泽泉科技股份有限公司 | 查看该公司所有产品 >> |
浮游植物分类荧光仪PHYTO-PAM-II
紧凑型设计
——多激发波长浮游植物荧光仪,可高灵敏度检测自然水体中稀薄藻类悬浮液的光合活性
技术特点:
PHYTO-PAM-II升级特点
新PHYTO-PAM-II体现了此前推出的用于水生生物光合作用测量的所有PAM荧光仪的最新进展,包括PAM-100,XE-PAM,WATER-PAM,DIVING-PAM,4波长的PHYTO-PAM以及MULTI-COLOR-PAM。
基于完善的光学单元ED-101US,新的紧凑型PHYTO-PAM-II融合了前期所有产品的优点,测量光更可控(强度和频率),采用XE和4波长PHYTO-PAM多波长测量光的设计,结合了PAM-100和MULTI-COLOR-PAM的高时间分辨率等特点。因此既可以进行传统的PAM测定,又能实现快速荧光诱导动力学以及四大类色素藻的分类。PHYTO-PAM-II的操作软件基于久经考验的Phyto-Win软件开发而来,并增加了许多全新的扩展应用。
PHYTO-PAM-II相对PHYTO-PAM的主要改进
紧凑型PHYTO-PAM-II |
PHYTO-PAM |
5种不同波长的测量光用于生物体内不同类型的天线色素荧光的激发 |
4种不同波长的光 |
4种色素类型的在线分类 |
3种色素类型 |
6种波长的光化光 |
1种光化光 |
可以分别测量绿藻,蓝藻,硅/甲藻以及含有藻红蛋白的有机体,如隐藻不同波长下PSII的活性。 |
无该功能 |
紧凑型设计 |
需要组装 |
增加了快速动力学操作模式,可通过强光化光脉冲,测量不同波长的O- I1荧光上升动力学 |
无该功能 |
通过测定不同光质和光合生物色素复合体,获得光系统II功能性捕光截面积的信息即σPSII |
无该功能 |
通过FluoRed荧光标准将参考光谱校准标准化 |
无该功能 |
获得的参考光谱可在不同设备及用户间互换使用 |
参考光谱不能互换 |
产地:德国WALZ
参考文献
1.Marchello, A. E., et al. (2018). "Effects of Titanium Dioxide Nanoparticles in Different Metabolic Pathways in the Freshwater Microalga Chlorella sorokiniana (Trebouxiophyceae)." Water, Air, & Soil Pollution 229(2): 48.
2.Puxty, R. J., et al. (2018). "Energy limitation of cyanophage development: implications for marine carbon cycling." The ISME journal: 1.
3.Bakheet, B., et al. (2018). "Electrochemical inactivation of Cylindrospermopsis raciborskii and removal of the cyanotoxin cylindrospermopsin." Journal of hazardous materials 344: 241-248.
4.Candido, C. and A. T. Lombardi (2018). "The physiology of Chlorella vulgaris grown in conventional and biodigested treated vinasses." Algal Research 30: 79-85.
5.Eigemann, F., et al. (2018). "Niche separation of Baltic Sea cyanobacteria during bloom events by species interactions and autecological preferences." Harmful Algae 72: 65-73.
6.Han, Q., et al. (2018). "Carbon biogeochemical cycle is enhanced by damming in a karst river." Science of The Total Environment 616: 1181-1189.
7.Karthikaichamy, A., et al. (2018). "TEMPORAL ACCLIMATION OF MICROCHLOROPSIS GADITANA CCMP526 IN RESPONSE TO HYPERSALINITY." Bioresource Technology.
8.Kazanjian, G., et al. (2018). "Primary production in nutrient-rich kettle holes and consequences for nutrient and carbon cycling." Hydrobiologia 806(1): 77-93.
9.Li, M., et al. (2018). "Exposure of engineered nanoparticles to Alexandrium tamarense (Dinophyceae): Healthy impacts of nanoparticles via toxin-producing dinoflagellate." Science of The Total Environment 610: 356-366.
10.Liu, L., et al. (2018). "Biodiesel production from microbial granules in sequencing batch reactor." Bioresource Technology 249: 908-915.